

SYNTHESE PROJET « SoViMed »

Sols Vivants maraîchers en région Méditerranéenne 2019-2022

Partenariat

- ► CIVAM BIO 66: cultures bio sous-abris (rotation melon, salade, aubergine, courgette AB) (66)
- ► SUDEXPE : rotation melon / céréales en plein champs (34)
- ► SICA CENTREX : cultures maraichères de plein champs : rotation artichaut, pastèque / butternut, salade /choux (66)

Date de début : 01/03/2019

Date de fin : 28/02/2023

Budget total: 194 348 euros

Co-Financements européen FEADER - Agence de l'eau

80% du projet

CONTEXTE ET OBJECTIFS

Pourquoi travailler le Non travail du sol?

- Plusieurs mouvements prônent le non travail du sol MAIS :
- Peu de données scientifiques sur les bénéfices supposés de ces pratiques
- Peu ou pas d'études sur l'impact technico-économique sur les exploitations
- Manque de référence en maraichage
- Pratique développée en grande culture avec des contraintes désherbage notamment
- Des expérimentations sans témoin ou gestions différenciées des parcelles

Pour répondre à quelles problématiques spécifique

1) Agriculture biologique sous – abris

► Améliorer fertilité du sol et rétention en eau / éléments minéraux

2) Artichaut plein champs

- ▶ Gérer l'enherbement, éviter le rebuttage des plants, freins au passage des cultures en goutte à goutte
- Améliorer la résistance au battage du sol dans un secteur soumis aux épisodes pluvieux extrêmes.

3) Melon plein champs

- Repenser la culture pour insérer le melon sur les parcelles en rotation avec des céréales, conduites en "Agriculture du vivant"
- ▶ Préserver la qualité des sols, limiter l'érosion et le lessivage d'azote
- Améliorer l'efficience de l'eau.

Avec quels objectifs?

- Acquérir références technico-économiques
- ► Elaborer des itinéraires techniques économiquement viables
- Etudier les impacts sur la rentabilité de l'exploitation, l'environnement, la résilience des parcelles, la biodiversité, la consommation d'intrants et d'eau

Expérimentation comparative à 2 Modalités en gestion différenciée

- → Parcelle en sol travaillé (W)
- → Parcelle en sol non travaillé (NT)
- Culture étudiées adaptées aux problématiques de chaque station
 - Melon, salade, artichaut, courgette, pastèque, courges, choux, aubergines

Point de départ : Hypothèses à valider

Hypothèses souvent avancées pour le non travail du sol :

- Diminution des besoins en eau, en matières fertilisantes, en herbicides
- Diminution des temps de travaux et de la pénibilité
- Diminution de la consommation énergétique
- Amélioration de la qualité des sol (érosion) par couverture permanente
- Préservation de la biodiversité (ver de terre, vie microbienne)
- Amélioration de la productivité du sol
- Stockage du carbone
- Système économiquement viable

Indicateurs de suivi communs aux différents sites

Agronomiques

- Vigueur de plantes, rendements, calibres, taux de sucre, précocité
- Pourcentage de pertes

Résilience des parcelles

- Vitesse d'infiltration de l'eau, Réserve d'eau utilisable dans le sol, capacité à fixer les éléments minéraux, stockage carbone
- Niveaux d'infestation maladies et ravageurs

Biodiversité

Ver de terre, vitesse de dégradation de la matière organique (tests slips et thés), abondance des insectes rampants...

Etat du sol

Stabilité du sol, densité apparente, température, humidité

Economiques

▶ Temps de travaux, indice de traitement, quantités d'intrants utilisés, consommation d'eau

SYNTHESE DES RESULTATS

Synthèse agronomique

▶ Vigueur plus faible (plein champ) (-30%), moins marquée sous abri

Butternut 22/07/2022

Pastèques 15/06/2022

Synthèse agronomique

- ▶ **Vigueur plus faible** (plein champ) (-30%), moins marquée sous abri
- Précocité retardée sur légumes fruits
- ▶ Rendements inférieurs en plein champ (- 26 % inférieur en moyenne sur l'ensemble des cultures)
- Pas de pertes de rendements sous-abri
- ▶ **Perte de calibre** de l'ordre de 3-4% en moyenne sauf sur les parcelles recevant 1,5 à 2 fois plus d'eau que la parcelle travaillée
- ▶ Pas d'incidence sur le taux de sucre, qualité des produits
- Taux d'azote inférieur dans les plantes en Non travail

=> Perte de chiffre d'affaire significatif en plein champs, moins marqué sous abri.

Synthèse agronomique

- Prolifération des rongeurs du sol => maitrise possible
- ▶ Besoins en irrigation plus importants pour garantir les rendements
- Apports d'eau à fractionner et plus fréquents (changement structurel du sol)
- ► Faim en azote sur le parcelle avec couverture engrais vert et apports de matière organique

A travailler!

► Tassement du sol => plantation très difficile dans un sol non travaillé et levée des graines aléatoire —

Non travait du sol

=> Réduction du travail du sol

Résilience des parcelles face aux aléas climatiques

Erosion et vent

- ▶ Meilleure stabilité structurale
- => Limite érosion par le vent, ravinement par les pluies
- ► Moins de croute de battance

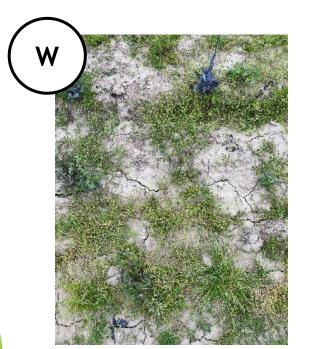
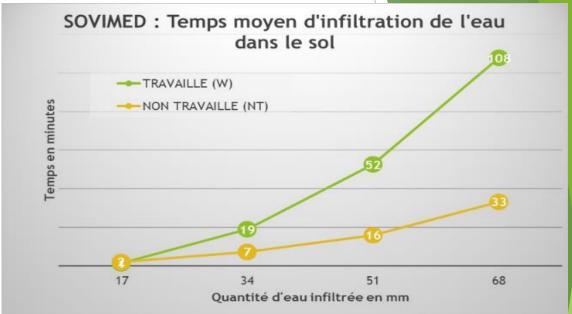


Photo après 5 min d'immersion statique


Résilience des parcelles face aux aléas climatiques

Pluies méditerranéennes

- ► Meilleure infiltration de l'eau
- ► Temps de saturation diminué

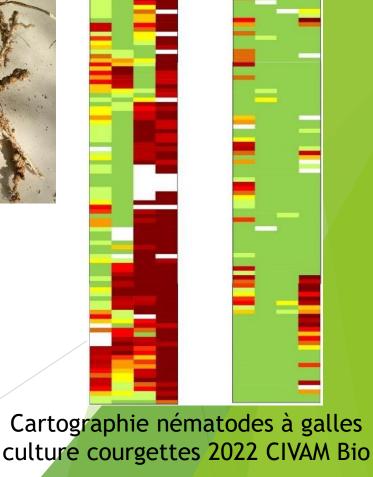
Moins de variations extrêmes du sol (saturation / sécheresse)

Résilience des parcelles face aux aléas climatiques

Sécheresse

- ► Assèchement du sol plus lent
- ► Augmentation de la réserve utile
- ► Climat plus frais sous abri en été

10/05/2023 : engrais vert = vesce semée à l'automne 2022 sans irrigation



Biodiversité

- Plus de vers de terre
- Plus de rongeurs
- ▶ **Diminution du** *Cyperus rotondus* (souchet) mais + de liseron
- Diminution de l'impact nématodes à Galles
- Dégradation des slips plus importants
- Dégradation du thé variable

Biodiversité

Résultats variables:

- Sous abri, tendance à plus de maladies cryptogamiques
- En plein champ, tendance à moins de maladies cryptogamiques
- Pression ravageurs + importante sous abris, pas d'effet en plein champs
- Composante biologique du sol, amélioration limitée sous abri
 - => Nécéssité sous abri d'augmenter les apport de matière fraiche pour améliorer l'état biologique du sol
 - => Observations à consolider

Changements climatiques

Stockage du carbone

1 seule observation en fin de projet sur cultures de plein champs

- ► + 50 tonnes / ha pour NT
- + 39 tonnes / ha pour W

Lié aux apports de

matière organique

- → Augmentation du stockage du carbone
 - + 11 tonnes / ha sur NT par rapport à W (+ 28%)

Energies fossiles

 Augmentation des passages tracteurs en plein champ (entretien de l'enherbement)

Equilibre non atteints, résultats insuffisants, à consolider

Indicateurs économiques

- ▶ Temps de désherbage plus important
- ► Temps de plantation plus long => travail superficiel indispensable
- Intrants fertilisants globalement égaux sous abri sans conséquence sur les cultures
- ► En plein champs, intrants fertilisants égaux ou supérieurs sans pour autant satisfaire complétement les besoins des plantes => rendements inférieurs
- Apports en eau globalement supérieurs pour garantir les rendements (1,5 à 2 x) en plein champs
- Coûts de production variables en fonction des cultures, équivalents ou supérieurs
 - => information à consolider, itinéraires à affiner, équilibre à stabiliser

CONCLUSIONS ET PERSPECTIVES

Validation hypothèses de départ

- X Diminution des besoins en eau, en matières fertilisantes, en herbicides
- Diminution des temps de travaux et de la pénibilité
- O Diminution de la consommation énergétique
- Amélioration de la qualité des sol (érosion) par couverture permanente
- Préservation de la biodiversité (ver de terre, vie microbienne)
- O Melioration de la productivité du sol
- Stockage du carbone
- Système économiquement viable
 - ▶ Poursuivre les observations car équilibre des parcellesnon atteint

Conclusions

- Résultats environnementaux encourageants mais maitrise insuffisante pour garantir la sécurité des exploitations qui impliquent de :
 - ▶ Sous abri : Travailler l'impact sur les maladies et ravageurs, amélioration biologique du sol, tassement, temps de travaux
 - ▶ En plein champs : reconcevoir la gestion de l'irrigation, de la fertilisation
- Nécessité de poursuivre le travail pour améliorer les résultats technicoéconomiques en plein champs
- ► Itinéraires technique avec couverts végétaux non validés

Perspectives

Non - travail du sol = NON

=> Réduction du travail du sol = OUI

Suite du projet :

=> mise en équilibre (années 4 à 7) en réduction travail du sol

Dépôts France Agrimer co-innovation (en attente de réponse) :

Projet **CONSOLE** élargie à toute la zone méditerranéenne (Partenaires :
INRAe Alenya, Sica Centrex, CIVAM BIO 66, SUDEXPE, APREL, CETA du Soleil)

Merci de votre attention!

SOVIMED : Sols Vivants maraîchers en région Méditerranéenne 2018-2022

